

Mynt prospect continues to grow with significant new coppergold intercepts.

Latest results highlight the potential for a significant mineralised system, with a +1km long trend identified which remains open along strike and down dip.

HIGHLIGHTS

- Further significant copper-gold mineralisation intersected in follow-up Reverse Circulation (RC) drilling at the **Mynt prospect**, part of the 100%-owned Moora Project in WA:
 - ✓ MRRC0089 21m @ 1.3% Cu and 0.4g/t Au from 119 140m*, including:
 - o 5m @ 2.4% Cu and 0.8g/t Au from 121 126m and
 - o 4m @ 2.3% Cu and 0.7g/t Au from 129 133m
 - √ MRRC0100 <u>11m @ 1.5% Cu and 0.6g/t Au</u> from 118 129m*, including:
 - o 5m @ 2.0% Cu and 0.8g/t Au from 122 127m
- Latest results confirm the strike continuity of previously reported mineralisation (see ASX release dated 4th March 2022):
 - ✓ MRRC0040 24m @ 1.9% Cu and 0.7g/t Au from 99 123m^{*}, including:
 - o 14m @ 2.9% Cu and 1.1/t Au from 100 114m
- Recently completed diamond drill-hole MRRD0088 (assays pending), drilled ~90m below MRRC0040, has intersected a ~35m thick zone of strong sulphide mineralisation similar to that observed in the holes reported above.
- Latest results interpreted to part of a +1km long mineralised trend that remains open both along strike and down-dip.
- Assays pending for a further 14 holes drilled at Mynt plus another 26 holes drilled on the Moora Project and adjacent Koojan JV area as part of an 82-hole/12,959m RC program designed to test multiple targets defined by previous geochemical and geophysical surveys.
- Strong cash position (~\$21.1M at 31 December 2022) ensures that Minerals 260 can maintain exploration momentum at Moora and its other projects.

Minerals 260 Limited (ASX:MI6, "Minerals 260" or "Company") is pleased to advise that assay results received from recent follow-up Reverse Circulation (RC) drilling have confirmed the potential for significant copper-gold mineralisation at the Mynt prospect, part of the Company's 100%-owned Moora Project located ~150km north-east of Perth in the Julimar Mineral Province of SW Western Australia (*Figure 1*).

The Moora Project forms part of a contiguous, 1,000km² land package which includes the adjacent Koojan JV, where the Company is in joint venture with Lachlan Star Limited (ASX: LSA) and has earned an initial 30% equity with the right to increase this to 51%.

^{*} True width 70-80% of down-hole width

In November 2022, Minerals 260 commenced a major drilling program at Moora and Koojan designed to test 26 targets including the Mynt prospect and a number of other priority prospects where previous exploration had defined significant gold and copper-gold mineralisation. The program, which comprised a total of 82 RC holes for 12,959m, was recently completed (see Appendices 1 and 2 for drill statistics including significant assay results).

At Mynt and the immediate adjacent area, a total of 17 RC holes were drilled for 2,918m, plus three subsequent diamond core holes (MRRD0088, MRRD0012-0013) for 588m. Assays been received for three RC holes – MRRC0087, MRRC0089 and MRRC0100.

MRRC0089 and MRRC0100 were drilled 40m south-east and north-west respectively of the initial discovery hole MRRC0040 (see highlights) and were designed to determine the trend and continuity of the mineralisation.

The Mynt prospect was originally identified by soil geochemistry and shallow air-core drilling which defined a ~3km long, broadly east-west trending copper-gold anomaly coincident with a contact with an arcuate magnetic high that appears to be demagnetised in the east (*Figure 2*).

The latest results indicate that:

- The mineralisation is hosted by a steeply south-west dipping (*Figures 3 and 4*), structurally controlled, quartz-sulphide (chalcopyrite-pyrrhotite+bornite/*Figure 5*) veined zoned within foliated mafic amphibolites. Geological observations from MRRD0088, drilled beneath MRRC0040, indicate that the mineralised zone may be thickening at depth.
- Mineralisation is partially remobilised and upgraded by pegmatite intrusions.
- The main pathfinder element associated with the copper and gold is tungsten plus elevated silver, bismuth and tellurium.
- Arsenic values are low.

RC drilling in 2021 (MRRC0008 -0014/Appendix 1) into the eastern part of the Mynt geochemical anomaly (*Figure 2*) returned several significant results which are now interpreted to be part of the main mineralised trend.

Follow-up drilling at Mynt will be planned once results are received for the outstanding holes, which are being prioritised at the assay laboratory.

MRRC0087, which was drilled into an EM anomaly (*Figure 2*) located south of the main Mynt trend, intersected a 3m thick, semi-massive to massive sulphide zone which returned 3m @ 0.3% Cu, 0.6% Ni, 0.09% Co and 70ppb Au from 92 – 95m. This appears to be a different style of mineralisation to Mynt, and further drilling will depend on results from the holes drilled immediately along strike.

Assays have also been received for an additional 14 RC holes (MRRC0069, 0075, 0076, 0078, 0080-0083, 0091 – 0096), drilled into targets on the Koojan JV. Further elevated gold (up to 98ppb) was recorded from the Mallory prospect (*Figure 1*) and a review is underway to determine whether follow-up drilling is warranted.

Management Comments

Minerals 260 Managing Director David Richards said: "Mynt continues to develop into what appears to be a significant mineralised system, with recent drilling delivering new wide copper-gold intercepts on either side of the discovery hole and strong visual indications from deeper drilling. We are pleased that the latest results have

validated the geological observations that led to us to proceed with the second phase of drilling at Mynt, and we look forward to receiving the next round of assays and planning follow-up drilling."

Jhis announcement has been authorised for release by the Managing Director, David Richards.

Competent Person Statement

The Information in this report that relates to new Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr David Richards, who is a Competent Person and a member of the Australasian Institute of Geoscientists (AIG). Mr Richards is a full-time employee of the company. Mr Richards has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Richards consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Information in this Report that relates to other Exploration Results for the Moora and Koojan Projects is extracted from Minerals 260 Limited ASX announcements titled:

- "Multiple zones of gold mineralisation intersected in initial follow-up drilling at Moora" released on 3 February 2022;
- "Wide copper-gold zone confirmed at Moora" released on 4 March 2022;
- "Second significant copper-gold zone discovered at Moora" released on 19 April 2022;
- "Outstanding new intercept of 13m @ 3.3g/t gold at Moora" released on 11 July 2022;
- "New intercept of 16m @ 2.8g/t Au confirms scale and potential of Angepena gold prospect at Moora" released on 27 September 2022;
- "Significant bedrock palladium-platinum intersected for the first time at Moora ahead of major new drilling program" released on 4 November 2022; and
- "Second phase of drilling to commence at the Mynt copper-gold prospect Moora Project, WA" released on 3 February 2023

which are available on www.minerals260.com.au.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates or production targets or forecast financial information derived from a production target (as applicable) in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statement

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

For further information please contact:

David Richards Managing Director T: +61 8 6556 6020 info@minerals260.com.au

Investor Relations:

Nicholas Read **Read Corporate** T: +61 8 9388 1474 nicholas@readcorporate.com.au

Minerals 260

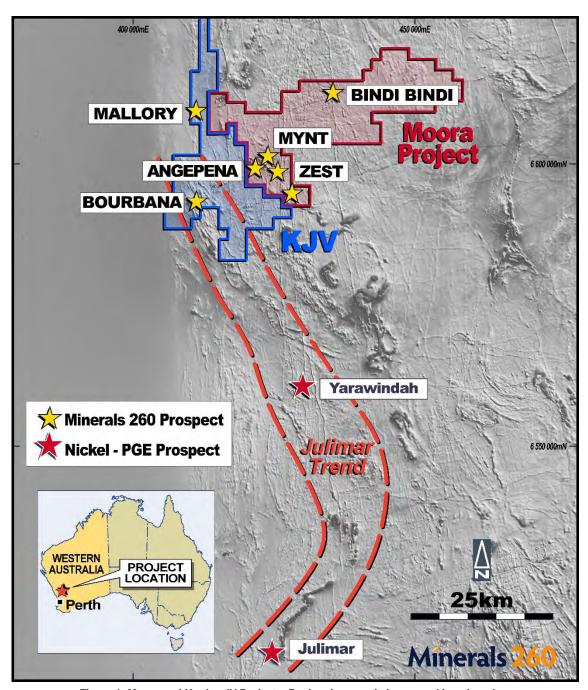


Figure 1: Moora and Koojan JV Projects: Regional magnetic image and location plan.

ASX RELEASE | 27th February 2023 | ASX:MI6

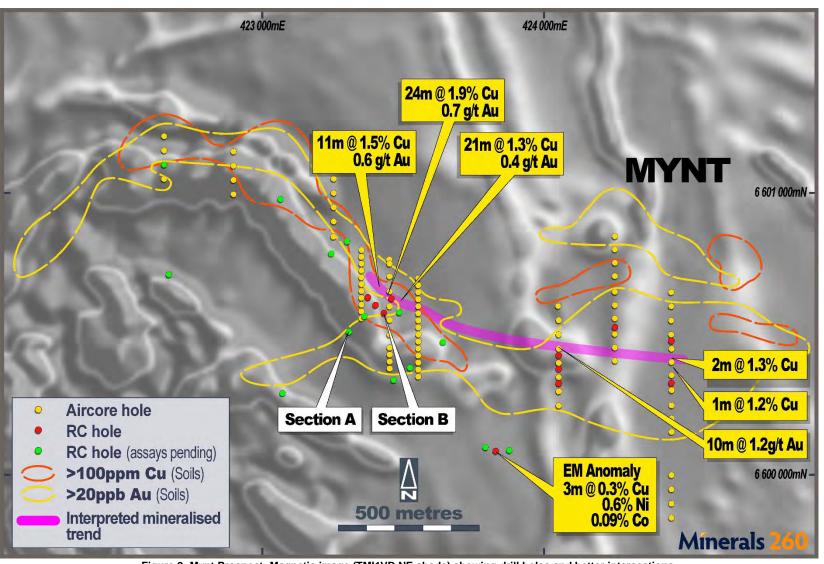


Figure 2: Mynt Prospect: Magnetic image (TMI1VD NE shade) showing drill holes and better intersections.

Figure 3: Mynt Prospect – Drill Section A (see Figure 2) for location.

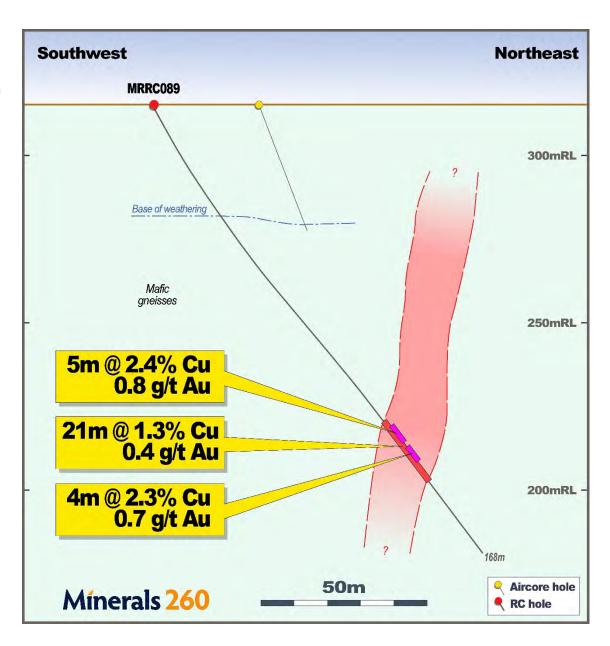


Figure 4: Mynt Prospect – Drill Section B (see Figure 2) for location.

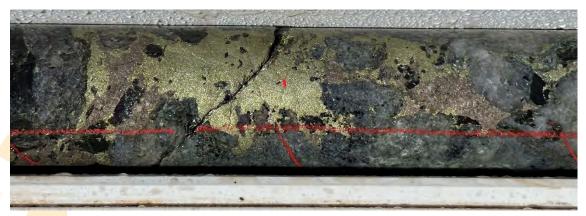


Figure 5: Mynt Prospect – Chalcopyrite-pyrrhotite rich drill core from MRRD0088 (see Figure 3).

ASX RELEASE | 27th February 2023 | ASX:MI6

Appendix 1 - Moora Project- RC Drill Hole Statistics

				Depth						Significant	Intercepts	
Hole_ID	East	North	RL	•	Dip	Azimuth	From (m)	To (m)	Gold (>	0.1g/t)	Copper	(>0.1%)
D				(m)					Interval (m)	Grade (g/t)	Interval (m)	Grade (%)
							198	241	43*	1.8		
MRRC0001	422190	6599839	300	246	-59	39	inc. 18m	@ 3.9g/t	Au from 211m	and 2m @		
								21.2g/t	Au from 222m	ı		
MRRC0002	422355	6600014	300	224	-60	225			NI::	£:		
MRRC0003	422620	6599527	300	102	-59	353			NO SIgni	ficant assays		
MRRC0004	423456	6600628	300	150	-59	360	0	20			20	0.1
MRRC0005	423446	6600764	300	117	-60	180	24	32			8	0.2
MRRC0006	423448	6600425	300	120	-60	360	-		No signi	ficant assays		
							48	56	8	0.9	8	0.1
MRRC0007	423451	6600374	300	120	-59	360	'	inc. 2	m @ 2.8g/t A	u and 0.1% Cu	ı from 48m	
							27	37	10	1.2		
MRRC0008	424047	6600425	300	123	-60	358				6g/t Au from	34m	
	12.0.7	0000 120	555	123			92	95	3	0.3	3	0.2
							10	12	2	0.8	2	0.2
							19	20	1	1.3		0.3
MRRC0009	424050	6600374	300	123	-60	356	32	34	2	0.6		
IVIKKCUUU9	424050	0000374	300	123	-60	330	37	49	12	0.6	12	0.3
							37	_				0.3
1 4D D C 0 0 4 0	42.4052	6600005	200	447		260	22		m @ 1.1g/t A		a trom 41m	
MRRC0010	424052	6600325	300	117	-60	360	22	25	3	0.3		
MRRC0011	424250	6600525	300	117	-60	178			No signi	ficant assays		
MRRC0012	424450	6600325	300	117	-60	359	111	117	1 2	0.2	2	0.0
							114	117	3 m @ 0.3g/t Au	0.3	from 115m	0.9
MRRC0013	424450	6600475	300	150	-60	178	133	138	5	0.4	5	0.6
							155		⊃ m @ 0.9g/t Au			0.6
MRRC0014	424450	6600475	300	120	-60	358	60	62	2	0.8	2	0.3
MRRC0015	422158	6600089	307	84	-60	215	00	02		Abandoned	2	0.5
IVIKKCOOTS	422136	0000069	307	04	-00	213	1	12	11	0.3	11	0.1
							1		.m @ 1.3g/t A			0.1
							61	66	5	0.4	5	0.8
							- 01		sm @ 0.5g/t A	-	_	0.0
							79	88	9	0.2	9	0.1
MRRC0016	422127	6600042	305	150	-57	213	92	96	4	1.4	4	0.2
									m @ 2.1g/t A		•	0.2
							101	116	15	0.6	15	0.1
									inc. 1m @ 1.5			0.12
								inc. 2ı	m @ 1.3g/t Au			
							147	149	2	8.7		
MRRC0017	422165	6600088	308	150	-58	214			inc. 1m @ 16.		147m	
							0	6	6	0.7		
	400007	5500000	204	400		247			inc. 2m @ 1	.6g/t Au from	1m	
MRRC0018	422087	6599992	304	180	-51	217	10	20	10	0.7		
						1			inc. 4m @ 1.	3g/t Au from	13m	•
MRRC0019	422078	6600147	301	150	-55	213				ficant assays		
MRRC0020	422046	6600097	300	30	-55	212			Hole A	Abandoned		
							13	16	3	0.5	3	0.1
						1	40	48	8	0.3		
						1			inc. 1m @ 1.	2g/t Au from	40m	
MRRC0021	422043	6600094	300	150	-60	213	120	128	8	0.5		
									inc. 1m @ 1.2	g/t Au from	126m	
						1	145	150	5	0.7		
									inc. 2m @ 1.2	g/t Au from	147m	

											Significant	Intercepts	
	Hole_ID	East	North	RL	Depth	Dip	Azimuth	From (m)	To (m)	Gold (>		Copper	(>0.1%)
) -				(m)			`	• •			Interval (m)	
1								3	12	9	2.8	` '	
1								,		inc. 5m @ 4	.7g/t Au from	1 3m	
								30	43	13	1.3		
1	MRRC0022	422010	6600047	300	150	-58	211	,		inc. 4m @ 3.	5g/t Au from	32m	
								46	52	6	0.2		
)								79	96	20	0.3		
										inc. 4m @ 1.		76m	
	MRRC0023	421975	6600001	300	150	-56	212				ficant assays		
								28	48	2	0.1		
)	MRRC0024	421890	6600059	300	150	-56	220	50	57	7	0.4		
								,		inc. 1m @ 1.	0g/t Au from	56m	
\	MRRC0025	421923	6600109	300	150	-60	213	116	125	9	0.2		
)	MRRC0026	421958	6600159	300	96	-61	212	,				!	
	MRRC0027	422500	6599700	314	150	-60	216			No signi	ficant assays	•	
1	MRRC0028	422535	6599758	317	150	-61	215	40	46	6	0.4		
/								28	32	4	0.2		
	MRRC0029	422570	6599798	318	150	-59	221	124	128	4	0.3		
								91	96	5	0.6	5	0.3
	MRRC0030	422580	6599641	318	156	-60	213	- 51		2m @ 1.1g/t A			0.0
]	MRRC0031	422618	6599697	320	150	-61	214				ficant assays		
)	MRRC0032	422653	6599747	320	150	-61	212	20	24	4	0.3		
	MRRC0033	422662	6599588	320	150	-61	213			· ·	ficant assays	<u> </u>	
1	MRRC0034	422697	6599637	321	150	-62	211	2	20	18	0.2		
1	MRRC0035	422733	6599689	320	150	-61	212			ļ -		<u>ļ</u>	
	MRRC0036	422045	6599920	298	150	-60	215			No signi	ficant assays	;	
	William	122013	0333320	230	150		213	138	139	1	0.3	1	0.4
4	MRRC0037	425696	6598176	339	192	-72	359	143	144	1	0.1	1	0.8
								148	152	4	0	4	0.3
)	MRRC0038	425701	6598319	338	42	-77	180				Abandoned	<u>, </u>	0.0
		.25762	0000010				100	72	84	12	2	12	1.4
1	MRRC0039	425697	6598313	338	162	-60	180	,,		5m @ 3.5g/t A			
								140	152			12	0.2
								99	123	24	0.7	24	1.9
	MRRC0040	423400	6600601	313	186	-61	42	- 55		1m @ 1.1g/t A			
					_			106	111			5	0.6
)	MRRC0041	427897	6594698	298	234	-60	270			inc. 2m @ 1.	3% Cu from 1		
								2	6	4	0.6		
								<u> </u>			.1g/t Au from	1 3m	
								10	16	6	0.3		
1	MRRC0042	425691	6598269	343	120	-60	180	21	37	16	0.2		
								52	58	6	0.1		
)								102	103	1	1.2	1	0.3
								127	140	13	3.3	13	0.2
	MRRC0043	425691	6598355	339	210	-61	178			@ 16.7g/t Au a			
										n @ 16.9g/t A			
1	MRRC0044	425774	6598274	340	150	-60	211				ficant assays		
	A	· ·						5	11	6	0.5		
	MRRC0045	425796	6598309	338	120	-60	212			_	.2g/t Au from	1 7m	
	MRRC0046	425600	6598351	343	210	-60	215						
	MRRC0047	425618	6598382	340	126	-59	215			No signi	ficant assays	;	
	MRRC0048	425789	6598355	336	204	-59	177	5	9	4	0.3		
						ì		_	-	1			

					Depth						Significant	Intercepts	
	Hole_ID	East	North	RL	(m)	Dip	Azimuth	From (m)	To (m)	Gold (>	0.1g/t)	Copper	(>0.1%)
	7)				(111)					Interval (m)	Grade (g/t)	Interval (m)	Grade (%)
								1	6	5	0.2		
								26	35			9	0.1
	MRRC0049	425692	6598394	338	203	-60	177	117	118	1	0.4	0.1	0.2
								154	155	1	0.4	1	0.2
								193	196	3	0.2		
								3	9	6	0.2		
	MRRC0050	425797	6598331	337	192	-60	180	25	26	1	0.5		
								36	40	4	0.3	4	0.1
								52	70			18	0.3
									İ	inc. 2m @ 1.29			
											.7% Cu from		
	MRRD0051	425681	6598334	341	259	-60	215	123	128	5	0.2	5	0.1
								132	140	8	0.2	8	0.1
								152	180	28	0.2	28	0.3
								207	210	3	1.2	f 200	
								FC		m @ 3.5g/t Au		rrom 209M	
	MRRC0052	421981	6599971	298	180	-60	31	56	64	8	0.3		
	IVIKKCUUSZ	421901	0399971	290	100	-60	31	84	92	8	0.2		
1								152	156	4	0.2		
								0 28	3 40	3 12	0.4		
								28	40	inc. 2m @ 1.:		24m	
								44	56	12	0.2	34111	
	MRRC0053	422086	6599961	304	107	-60	32	44	30	inc. 1m @ 1.0		44m	
								71	78	7	0.2	4-1 111	
								82	89	7	0.3		
								103	107	4	0.6		
								0	2	2	0.3		
								14	16	2	0.2		
								20	22	2	0.3		
	MRRC0054	422153	6599978	298	72	-60	37	24	27	3	0.2		
								48	64	16	2.8		
								,	<u> </u>	inc. 2m @ 9.	_	50m	
										inc. 3m @ 6.0	_		
								178	179		J.	1	0.2
								182	187			5	0.3
	MRRC0055	427767	6593687	351	252	-59.9	232	202	205			3	0.1
								209	210			1	0.4
								228	229			1	0.2
	MRRC0056	427890	6593761	337	180	-59	240	156	160	4	0.2	4	0.1
	MRRC0057	428030	6593971	323	204	-60.5	49			No signi	ficant assays		
	MRRC0058	427729	6593637	353	252	-61	239	189	193			4	0.2
	MRRC0059	427574	6593544	360	210	-60	220						
	MRRC0060	412800	6592931	291	67	-60	240						
	MRRC0060A	412768	6592945	294	174	-61	235			No ciani	ficant assays		
	MRRC0061	412525	6593625	305	150	-61	235			IAO 218111	ricarit assays		
	MRRC0062	411881	6593661	304	228	-61	237						
	MRRC0063	411648	6593941	306	186	-60	237						
	MRRC0064	411580	659 <mark>389</mark> 9	305	150	-61	237	82	84			2	0.2
	MRRC0065	411419	6593723	299	204	-60	246			·	· · · · · · · · · · · · · · · · · · ·	·	
	MRRC0066	4122 <mark>67</mark>	6592851	297	183	-60	238			No signi	ficant assays		
	MRRC0067	412700	6592900	298	150	-61	242						

					Depth						Significant		
	Hole_ID	East	North	RL	(m)	Dip	Azimuth	From (m)	To (m)	Gold (>		Copper (
	Ŋ									Interval (m)	Grade (g/t)	Interval (m)	Grade (%)
	MRRC0068	411848	6610121	247	150	-60	87						
	MRRC0069	411682	6610090	246	122	-60	79						
	MRRC0070	413038	6594431	323	150	-60	236						
	MRRC0071	413100	6594465	325	150	-60	239						
	MRRC0072	413170	6594509	324	150	-60	236						
"	MRRC0073	413239	6594547	319	145	-59	238						
	MRRC0074	411529	6593852	302	150	-60	237						
	MRRC0075 MRRC0076	412319 412214	6592370 6592815	289 295	174 150	-60 -61	239 235						
	MRRC0077	411941	6593701	305	120	-61	233			No signi	ficant assays		
))	MRRC0077	417001	6604501	292	160	-60	264			NO Sigin	ricarit assays		
	MRRC0079	417056	6603822	316	252	-60	270						
1)	MRRC0080	411762	6610105	246	150	-60	82						
ソ	MRRC0081	411923	6610129	244	150	-61	81						
	MRRC0082	411576	6610075	245	150	-61	82						
))	MRRC0083	411775	6609583	251	150	-61	78						
	MRRC0084	411639	6609559	253	150	-61	84						
	MRRC0085	411862	6609587	249	150	-61	76						
_	MRRC0086	411940	6609601	251	150	-60	80						
7	NADDC0007			240	444		470	49	65			16	0.2
7	MRRC0087	423826	6600083	318	114	-60	179	92	95			3	0.3
"	MRRD0088	423357	6600560	314	280	-61	43	,		Assay	s Pemding		
								119	140	21	0.4	21	1.3
	MRRC0089	423430	6600575	316	168	-60	49	,	inc. 5m	@ 0.8g/t Au a	nd 2.4% Cu fr	om 121m and	
	IVIKKC0089	423430	0000373	310	100	-60	49		inc. 4	m @ 0.7g/t Au	and 2.3% Cu	from 129m	
								145	150	5	0.1	5	0.1
))	MRRC0090	417116	6604004	308	180	-60	269						
	MRRC0091	408717	6592370	226	150	-60	218						
	MRRC0092	408177	6591904	219	150	-60	220						
リ	MRRC0093	408269	6592006	221	150	-60	223			No signi	ficant assays		
	MRRC0094	408317	6592066	217	150	-60	225						
	MRRC0095	408668	6592316	224	133	-60	219						
	MRRC0096	416879	6584001	281	150	-60	269						
))	MRRC0097	416795	6584008	278	150	-61	270						
	MRRC0098	415875	6583752	254	150	-61	269			Assay	s Pending		
	MRRC0099	415943	6583748	253	150	-61	266			T			
)	MRRC0100	423372	6600630	313	222	-60	49	118	129 inc. 5m	11 @ 0.8g/t Au a	0.6 nd 2.0% Cu fr	11 om 122 m and	1.5
	MRRC0101	423069	6600288	319	168	-60	48						
	MRRC0102	423304	6600510	314	180	-60	41						
	MRRC0103	423523	6600380	313	186	-61	43						
	MRRC0104	423062	6600979	311	180	-61	46						
))	MRRC0105	422665	6600714	312	162	-61	40						
	MRRC0106	422651	6601100	303	180	-60	357						
	MRRC0107	421936	6600032	294	150	-60	36						
	MRRC0108	422079	6600028	302	180	-61	33			Δςςαι	s Pending		
1	MRRC0109	422114	6600012	304	75	-60	32			Assay	chang		
	MRRC0110	416018	6583752	256	150	-60	271						
	MRRC0111	428595	6595858	280	36	-90	174						
	MRRC0112	423243	6600787	311	178	-60	44						
	MRRC0113	426931	659 <mark>801</mark> 3	312	202	-61	269						
	MRRC0114	426609	6594335	324	220	-60	268						
	MRRC0115	4275 22	6593340	351	172	-61	176						
	MRRC0116	427055	6594358	356	132	-60	90						

				Depth						Significant	Intercepts	
Hole_ID	East	North	RL	(m)	Dip	Azimuth	From (m)	To (m)	Gold (>	0.1g/t)	Copper	(>0.1%)
5)				(111)					Interval (m)	Grade (g/t)	Interval (m)	Grade (%)
MRRC0117	427692	6592920	328	204	-61	217						
MRRC0118	426949	6597954	312	102	-61	269						
MRRC0119	424123	6597998	326	180	-62	267						
MRRC0120	422113	6599708	299	150	-60	213						
MRRC0121	422069	6599645	295	150	-60	219						
MRRC0122	423484	6600576	317	204	-60	48						
MRRC0123	424835	6597153	324	150	-61	267						
MRRC0124	424702	6597163	318	150	-60	87						
MRRC0125	423787	6600097	317	42	-60	177						
MRRC0126	423872	6600086	316	180	-60	175						
MRRC0127	423465	6600338	319	240	-61	41			Assay	ys Pending		
MRRC0128	421692	6600181	300	198	-59	211						
MRRC0129	421739	6600012	300	200	-60	210						
MRRC0130	429395	6592910	284	126	-61	211						
MRRC0131	429320	6592767	285	144	-59	27						
MRRC0132	429452	6592771	282	96	-60	178						
MRRC0133	429435	6592647	286	138	-59	359						
MRRC0134	409025	6592452	225	150	-60	219						
MRRC0135	429453	6592648	228	150	-61	227						
MRRC0136	423299	6600828	312	200	-60	46						
MRRC0137	423639	6600471	321	150	-61	43						

^{*} True thicknesses: unless otherwise indicated 75-80% for holes drilled towards SW, 20-30% for holes drilled towards NE

Page 12 of 19

^{*}True thicknesses: MRRC0040 85 -90% of downhole intersection

Appendix 2 - Moora Project- Diamond Core Drill Hole Statistics

	u-l- ID	F 1	81l-	D.	Depth	D:	A A I-	5	T- ()	Signi	ficant Intercepts	
	Hole_ID	East	North	RL	(m)	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au >0.1 (g/t)	Cu >0.1%
	\mathcal{D}									15	0.7	-
	MRDD0001	422286	6599923	308	142	-61	215	100	115	inc. 9m @ 1.1g/t A	u from 100m and from 102m	3m @ 2.7g/t
										17	0.4	-
	MRDD0002	422311	6599963	310	217	-60	212	172	189		1.0g/t Au from 1	72m
								1	3.1	2.1	0.3	_
))								16	19	3	0.3	0.2
7										4	1.3	0.1
								29	33		t Au and 0.1% Cu	
										2.45	5.6	-
								64	66.45		@ 9.4g/t Au from	65m
7	MRDD0003	422196	6599984	308	228	-60	215			1.83	3.1	0.3
	22000			500	220			110	111.83	inc. 1.0m @ 5.5g/t		
))										6	1.1	-
7								124	130		② 5.3g/t Au from:	128m
Į										4.32	2.7	-
))								133	137.32		6.5g/t Au from 1	35 04m
								158	159	1	0.3	0.9
								61	62	1	0.8	0.9
								01	02	15	0.5	0.2
1								104	119	_	t Au and 0.3% Cu	
1								104	119		t Au and 0.5% Cu	
IJ										13	0.4	0.3
	MRDD0004	422222	6600010	310	271	-60	215	129	142			
	WINDD0004	42222	0000010	310	2/1	-00	213	162	164	2	t Au and 1.5% Cu 1 0.4	1.6
								187	189	2	0.4	0.3
								201	202	1	0.2	0.3
))								201	210	1	0.5	0.7
								211	212	1	0.9	0.7
7								211	212	4.6	0.8	0.5
"	MRDD0005	422376	6599861	311	163	-60	216	48	52.6		g/t Au and 2.7% C u	
	MRDD0006	422391	6599900	314	180	-60	214	107.84	110	2.16	0.2	0.4
	IVINDDOOOO	422331	0333300	314	100	-00	214	107.64	110	10.1	0.4	0.4
	MRDD0007	422470	6599835	319	240	-60	213	137.9	148		g/t Au and 1.3% C	
))	WINDDOOO7	422470	0333033	313	240	-00	213	137.3	140		/t Au and 1.3% C	
								206	211	5	0.3	0.1
	MRDD0008	422276	6600087	315	420	-55	216	312	314	2	0.5	0.1
								49.33	50	0.77	0.3	0.6
								49.33 59	69	10	0.3	0.6
	MRDD0009	422504	6599880	321	265	-59	215	186	187	10	0.1	1.5
	WINDDOODS	422304	0333880	321	203	-33	213	100	107	13	0.3	0.5
								200	213		g/t Au and 1.4% C	
	MRDD0010	422453	6599797	316	159	-59	215			No Significant A		u Holli Silli
)	חדחחחחוווו	422433	ופופכט	210	139	-39	213	2	8.15	6.15		
								28	36	8	0.3	
	MRDD0011	425694	6598310	339	228	-61	179	20	30	8.5	3.1	
	ואוועטטטעוואו	+43034	0230210	333	220	-01	1/3	68.5	77	inc. 2.9m @ 7.2g		from 70 0m
-								212	215	3	0.4	110111 /0.3111
	MRDD0012	423826	6600081	318	202	-60	180	212	213	3	0.4	
										Assays Pend	ing	
	MRDD0013	423426	6600572	316	271	-60	49					

Appendix 3 - Moora- JORC Code 2012 Table 1 Criteria

The table below summarises the assessment and reporting criteria used for the Moora Project and reflects the guidelines in Table 1 of *The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves* (the JORC Code, 2012).

Criteria	Section 1 Sampling Tec JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	Sub-surface samples have been collected by aircore (AC), reverse circulation (RC) and diamond core drilling techniques (see below).
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drillholes are oriented perpendicular to the interpreted strike of the mineralised trend except where limited access necessitates otherwise.
	inning the stead meaning of earliping.	Soil samples collected from 0.1 -1m depth with 200-500g, 2mm material collected for assay.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	AC and RC samples are collected by the metre from the dril rig cyclone in calico bags and a bulk sample in plastic minin bags.
	Aspects of the determination of mineralisation that are Material to the Public Report.	4m composite samples collected via spear sampling of 1m bulk samples.
	In cases where 'industry standard' work has been done this would be relatively simple (eg	1m samples retained for future analyses if 4m composites return anomalous assays.
	reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised	Samples typically dry.
	to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold	Cyclones regularly cleaned to remove hung-up clays and avoid cross-sample contamination.
	that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond core sampled in intervals of ~1m (up to 2m) when possible, otherwise intervals less than 1 m selected based on geological boundaries.
		Entire sample pulverised.
		Mixed 4 acid digest.
		Samples assayed at Bureau Veritas in Perth, WA
		Au, Pt, Pd (FA003),
		Cr, Fe, Mg, S, Ti (MA101)
		As, Bi, Co, Cu, Ni, Te, Zn (MA102)
Drilling	Drill type (eg core, reverse circulation, open-	Drilling techniques used:
techniques	hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Aircore – standard 3.5" aircore drill bit. Reverse Circulation (RC/5.5") with a face sampling hammer
	олошей али в 50, ву шпастейой, ещ.	 NQ2 Diamond Core, standard tube Diamond core holes drilled directly from surface or from bottom of RC pre-collars. Core orientation provided by an ACT REFLEX (ACT II RD) tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries for AC and RC drilling are visually estimated and recorded for each metre.
		For diamond core the recovery is measured and recorded for every metre.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	AC and RC drill collars are sealed to prevent sample loss and holes are normally drilled dry to prevent poor recoverie and contamination caused by water ingress. Wet intervals are noted in case of unusual results

are noted in case of unusual results.

Criteria	JORC Code explanation	Commentary
		For diamond core loss, core blocks inserted in sections where core loss has occurred. This has then been written on the block and recorded during the logging process and with detailed photography of dry and wet core.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All AC and RC drillholes are logged on 1 m intervals and the following observations recorded: Recovery, quality (i.e. degree of contamination), wet/dry, hardness, colour, grainsize, texture, mineralogy, lithology, structure type and intensity, vein type and %, and alteration assemblage.
		Diamond core is logged in its entirety as per detailed geological description listed above. Geotechnical logging completed for the entire hole.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is quantitative, based on visual field estimates
	The total length and percentage of the relevant intersections logged.	All holes are logged from start to finish.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core submitted for assaying following sawing with diamond core blade. Remaining half core stored as a librar sample.
preparation		Density measurements, if required, will be taken on half core samples using the Archimedes method.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Non-core samples are collected as 1 metre samples and then composited to 4m by tube/spear sampling. Samples are typically dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories i.e.
		Oven drying, jaw crushing and pulverising so that 85° passes -75microns.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Duplicates, standards and blanks inserted approximate every 25 samples.
	samples.	Review of lab standards
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field	Measures taken for drill samples include: regular cleaning of cyclones and sampling equipment
	duplicate/second-half sampling.	to prevent contamination; statistical comparison of duplicate, standards and blanks
		Statistical comparison of anomalous composite assay versus average of follow up 1m assays.
		Entire sample submitted for assay.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The drill sample size (2-3kg) submitted to laboratory consistent with industry standards.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the ass <mark>aying</mark> and laboratory procedures used and whether the technique is considered partial or	Assay and laboratory procedures have been selecter following a review of techniques provided by international certified laboratories.
	total.	Samples are submitted for multi-element analyses by Burea Veritas fire assay and aqua-regia techniques following mixed acid digest.

Criteria	JORC Code explanation	Commentary
		The assay techniques used are total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	An Olympus Vanta M Series Handheld XRF (pXRF) machine was used to assist geologists with mineral and lithology identification, in particular observed sulphides. A read time of 30 seconds was utilised, 15 second each for the first and second beams. The pXRF calibration was checked daily against a known standard. PXRF readings are only used to assist with sampling and logging and are not reported.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external	Regular insertion of blanks, standards and duplicates every 25 samples.
	laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established	Lab standards checked for accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Intersections peer reviewed in house.
	The use of twinned holes.	None drilled.
	Documentation of primary data, data entry procedures, data verification, data storage	All field data is manually collected, entered into exce spreadsheets, validated and loaded into an Access database
	(physical and electronic) protocols.	Electronic data is stored on the Perth server. Data is exported from Access for processing by different software packages.
		All electronic data is routinely backed up.
		No hard copy data is retained.
	Discuss any adjustment to assay data.	None required
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All samples collected are located using a handheld GPS.
	Specification of the grid system used	The grid system used is GDA94 Zone 50
	Quality and adequacy of topographic control.	Nominal RLs based on regional topographic datasets are used initially; however, these will be updated if DGPS coordinates are collected.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	<u>Drilling</u> Angepena – Holes ~50m apart on lines ~100m apart.
		Other targets - Variable due to first pass testing of geochemical or geophysical anomalies
		See diagrams in report.
		Soils First pass sampling collected on 200x200m, 400x400m and 800x800m grid spacing with density of sampling dependent on perceived prospectivity.
		Infill sampling collected on 50m x50m, 100m x 50m and 200x50m grids depending complexity of anomaly.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	MRE not being prepared.
	Wh <mark>ethe</mark> r sample compositing has been applied.	AC and RC drill samples collected as 4m composites which are composited from 1 m intervals. 1 m samples submitted for assay where composite or pXRF results are considered significant.

	Criteria	JORC Code explanation	Commentary
	Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is typically oriented perpendicular to the interpreted strike of geology and no bias is envisaged.
		If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	None observed.
_	Sample security	The measures taken to ensure sample security.	Senior company personnel supervise all sampling and transport to assay laboratory in Perth.
_	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.

reviews	sampling techniques and data.	
	Section 2 Reporting o	f Exploration Results
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	The Moora Project comprises 3 granted exploration licences (E70/5217, E70/5286 and E70/5287). The tenement package forms a contiguous, 467km² area located ~150km NNE of Perth, Western Australia.
	interests, historical sites, wilderness or national park and environmental settings.	All ELs are held by ERL (Aust) Pty Ltd, a wholly owned subsidiary of Minerals 260 Limited (MI6).
		MI6 has agreed to pay Armada Exploration Services:
		\$1,000,000 cash; anda 0.5% NSR
		if it discovers an economic mineral deposit and makes decision to mine within the above tenements.
		The Koojan JV Project area totals ~550km² and comprise five granted Exploration Licences (ELs 70/5312, 70/5337 70/5429, 70/5450 and 70/5515), and one application for Prospecting Licence (PL 70/1743).
		All tenements are 100%-owned by Coobaloo Minerals Pty Ltc which is owned 75% by Lachlan Star Limited (ASX: LSA) and 25% by private group Wavetime Nominees Pty Ltd.
		Minerals 260 (MI6) through its wholly owned subsidiary, ER (Aust) Pty Ltd, has earned 30% equity in the Koojan JV b spending \$1,500,000 on in-ground exploration and has th right to increase this 51% equity if it spends \$4,000,000 within 5 years of Agreement execution.
		MI6 manages exploration on the JV - a JV committee will be established to Wavetime will be 25% free-carried unt completion of a BFS after which it will have the right to contribute pro-rata or convert to a 2% NSR.
		The Moora and Koojan Projects are largely underlain by freehold properties used for broad acre cropping and livestock rearing. MI6 and Coobaloo have negotiated access agreements the properties where fieldwork has been competed and is in discussions with other landowners.
		ERL and Coobaloo have signed Heritage Agreements wit the South West Aboriginal Land and Sea Council Aboriginal Council who act on behalf of the Yued Agreement Group.
	The security of the tenure held at the time of reporting along with any known impediments	All tenements are in good standing.

reporting along with any known impediments to obtaining a licence to operate in the area.

All tenements are in good standing.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration for magmatic Ni-Cu-PGE sulphid mineralisation has been carried out over the central part of the Moora Project area by Poseidon NL (1968), Palladiun Resources (1999 – 2001) and Washington Resources (2004 – 2009).
		This work included geophysical surveys, surfact geochemistry and shallow drilling. Anomalou Ni+Cu+PGE+Au was defined within the shallow, weathere regolith.
		There has been no drill testing of the primary, unoxidise-bedrock prior to MI6 commencing work.
Geology	Deposit type, geological setting and style of mineralisation.	The Moora Project area is located within the >3Ga ag Western Gneiss Terrain of the Archaean Yilgarn Craton of southwest Western Australia.
		The prospective mafic/ultramafic bodies lie within the highl deformed Jimperding Metamorphic Belt which locall comprises high grade metamorphic rocks of quartz feldspacomposition with some amphibolite schist and minor bande iron formation. The Belt is up to 70 kilometres wide an bounded to the west by the Darling Fault (and Perth Basir and to the east by younger Archaean rocks. Regionally th geological trend is north-westerly with moderate to stee north-easterly dips.
		NNE and NNW trending, Proterozoic dolerite dykes als intrude the geological sequence.
		Outcrops are rare and bedrock geology is largely obscured be lateritic duricrust and saprolitic weathering. The clearing of farmland and related agricultural practices have further contributed to the masking of the bedrock.
		The intrusive mafic/ultramafic units are interpreted to forr concordant igneous complexes at least 50m thick; howeve the true dimensions are difficult to determine due to the limite outcrop.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	See diagrams and appendices in attached report.
	dip and azimuth of the holedown hole length and interception depthhole length.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	See Appendices referred to above.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	See Appendices referred to above.

Criteria	JORC Code explanation	Commentary
)	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None reported
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	At Angepena, true thicknesses estimated to be: 75-80% of down hole length for holes drille towards SW; and 20-30% of down hole length for holes drille towards NE. At Mynt true thicknesses estimated to be: 85-90% of down hole length At Zest true thicknesses estimated to be: 75-80% of down hole length
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figures in body of report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results for all sampling reported are shown on diagram included in the ASX report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material data reported
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Process and interpret pending assays from drillin programs. Plan follow up drilling.
		The exploration work will be staged with programs modifie and updated subject to progress results.

